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Abstract: We provide a systematic treatment of possible corrections to the inflaton po-

tential for D-brane inflation in the warped deformed conifold. We consider the D3-brane

potential in the presence of the most general possible corrections to the throat geometry

sourced by coupling to the bulk of a compact Calabi-Yau space. This corresponds to the

potential on the Coulomb branch of the dual gauge theory, in the presence of arbitrary

perturbations of the Lagrangian. The leading contributions arise from perturbations by

the most relevant operators that do not destroy the throat geometry. We find a generic

contribution from a non-chiral operator of dimension ∆ = 2 associated with a global sym-

metry current, resulting in a negative contribution to the inflaton mass-squared. If the

Calabi-Yau preserves certain discrete symmetries, this is the dominant correction to the

inflaton potential, and fine-tuning of the inflaton mass is possible. In the absence of such

discrete symmetries, the dominant contribution comes from a chiral operator with ∆ = 3/2,

corresponding to a φ3/2 term in the inflaton potential. The resulting inflationary models

are phenomenologically similar to the inflection point scenarios arising from specific D7-

brane embeddings, but occur under far more general circumstances. Our strategy extends

immediately to other warped geometries, given sufficient knowledge of the Kaluza-Klein

spectrum.
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1 Introduction

1.1 Motivation

Important conceptual problems of the standard Big Bang cosmology, including the horizon

and flatness problems, are resolved if the very early universe underwent a brief phase

of accelerated expansion [1]. In addition to explaining the large-scale homogeneity of the

universe, such an inflationary epoch provides a quantum-mechanical mechanism to generate

primordial inhomogeneities, which are required for the formation of structure and have been

observed as anisotropies in the temperature of the cosmic microwave background (CMB).

A statistical analysis of the primordial fluctuations inferred from the recent CMB data [2]

is in good agreement with the basic expectations from inflation [1, 3, 4].
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Given the phenomenological success of inflation, an important current direction in the-

oretical physics seeks to reveal the microphysical origin of the accelerated expansion. Since

effective field theory models of inflation are sensitive to assumptions about the ultraviolet

(UV) structure of the theory, it is instructive to build controlled and predictive inflationary

models in the general framework of string theory [5].

One well-studied class of string inflation models involves motion of a D3-brane towards

an anti-D3-brane in a warped throat region of a (conformally) Calabi-Yau flux compactifi-

cation [6]. An explicit example of such a geometry is the warped deformed conifold [7, 8].

The general form of the potential for the inflaton φ, which is the scalar describing the

radial position of the D3-brane in the throat, is

V (φ) = VD3/D3(φ) + H2φ2 + ∆V (φ) , (1.1)

where VD3/D3(φ) includes the warped antibrane tension and the Coulomb potential at-

tracting the D3-brane to the anti-D3-brane, and the mass term, H2φ2, arises from effects

related to moduli stabilization. These terms were computed in [6]. The large mass of

order the Hubble parameter, H2 ≈ V/(3M2
pl), generically spoils inflation, unless it can be

cancelled against other effects.

The third term in the potential, ∆V , represents all possible additional effects. In par-

ticular, ∆V includes the corrections to the potential that arise from embedding the system

into a compact Calabi-Yau space: one expects bulk fluxes, distant branes, further moduli-

stabilization effects, and so forth to perturb the throat geometry, resulting in some change

to the inflaton potential. It has been natural to think that by including the effects cap-

tured by ∆V , one will sometimes find small-field models of D-brane inflation by fine-tuning.

However, it has remained challenging to encompass all such contributions to the potential

within a single computable framework.1 In this paper, we present an effective parametriza-

tion of ∆V , i.e. of the leading compactification effects in warped D-brane inflation.

The compactified throat geometry can be described, via AdS/CFT duality, as an

(approximately) conformal field theory (CFT) which is cut off at some high mass scale

MUV and coupled to the Calabi-Yau moduli and to four-dimensional supergravity. Our

prescription involves perturbing the CFT Lagrangian by the leading irrelevant operators

that generate a Coulomb-branch potential for the CFT fields. Since the D3-brane position

φ is precisely such a Coulomb branch vev in the CFT, this gives an effective method for

computing ∆V . Moreover, the dual gravity description allows for an efficient determination

of the full list of such perturbations, through study of the spectrum of Kaluza-Klein (KK)

modes in the gravitational background. For excitations around the AdS5×T 1,1 background,

the KK modes have been classified in [11, 12] and matched to gauge-invariant operators

in the dual N = 1 superconformal field theory [13, 14]. Armed with these results, we

determine the structure of D-brane inflation in the specific case of the conifold throat.

Our method generalizes immediately to inflationary models in any geometry that is locally

approximated by a Calabi-Yau cone.

1For example, in [9, 10] the effects of D7-branes in the throat region were incorporated, but the effects

of the bulk Calabi-Yau space were not.
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1.2 The inflaton potential from gauge/gravity duality

Let us now spell out our strategy in greater detail. For the local throat geometries arising

in gauge/string duality, such as the warped deformed conifold [7], there is a very natural

way to list the leading corrections to the inflaton potential. When one compactifies the

throat, one should expect to perturb the throat geometry in the UV region by the leading

irrelevant operators present in the coupling of the dual CFT to the Calabi-Yau moduli

sector.2 Among these operators, some induce a potential on the Coulomb branch, and

thus contribute to the inflaton potential. The corresponding statement in the supergravity

language is that we are interested in the leading UV deformations of the background that

affect the potential of a probe D3-brane; perturbations of fields to which the D3-brane does

not couple directly may be ignored in our linearized treatment.

To proceed further, it is helpful to make some concrete assumptions about the global

features of the string compactification; we emphasize, however, that our strategy could

be generalized to a wide variety of other scenarios. We assume the existence of a warped

throat region glued into a compact Calabi-Yau space. Throughout this paper, we suppose

that the throat is long, so that the gauge theory is approximately conformal across a

wide range of energy scales. Moreover, we consider a D3-brane that is well-separated

both from the UV and from the infrared (IR) regions. Much of our analysis will refer

to the specific example of the warped deformed conifold throat [7], which asymptotically

approaches AdS5 × T 1,1, up to factors logarithmic in the AdS radius [8]. Since these

factors vary slowly, an approximation that is quite useful is to study D3-brane motion in

the exactly conformal background AdS5 × T 1,1.

We assume that the moduli are stabilized as in [15] or its variants. Supersymmetry is

broken by the presence of the anti-D3-brane at the end of the throat [16]; if the minimal

warp factor in the throat is a0, this sources a vacuum energy ∼ 2a4
0T3, where T3 is the

brane tension.

In this kind of scenario, we argue in appendix A that quite generally, there are bulk

moduli fields X with F-terms3 FX ∼ ξ a2
0. We implicitly assume that the value of the

coefficient ξ can be fine-tuned by considering different bulk fluxes, different bulk sources

of SUSY-breaking, or even distinct Calabi-Yau geometries. (This is of course the standard

procedure suggested by Wilsonian effective field theory.) The coupling of the CFT fields

to the bulk moduli will result in a leading perturbation to the Kähler potential4 K, and

correspondingly to the scalar potential V , of the form:

∆K = c

∫
d4θ M−∆

UV X†X O∆ ⇒ ∆V = c M−∆
UV |FX |2 O∆ , (1.2)

2Relevant perturbations of the throat are of course possible in general; we have excluded them by the

assumption that a local region of the flux compactification is well-modeled by the noncompact throat. This

seems to be sensible in full string compactifications, and is the same assumption that is always made in

this class of models.
3The scale of FX is constrained by the requirement that the energy associated with the UV perturbation

must not lead to decompactification of the compact space (see appendix A).
4We postpone to a future publication a complete treatment of direct superpotential couplings between

the CFT fields and X, as their effects can be somewhat subtle [17].
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where O∆ is a gauge-invariant operator of dimension ∆ in the (approximately) conformal

gauge theory dual to the throat, and c is a constant. The scale MUV relates to the UV

cutoff of the gauge theory or equivalently to the large r limit of the throat geometry.

As noted above, the operators O∆ of interest are built out of scalar fields, so that they

create a potential on the Coulomb branch of the gauge theory. In particular, we will be

interested in contributions to the potential for radial motion, with corresponding scalar

field φ. We will show that for suitable O∆, (1.2) induces a radial potential of the form5

∆V = −c M−∆
UV |FX |2 φ∆ , (1.3)

with c > 0. The overall minus sign in (1.3) arises after a minimization in the angular direc-

tions. This potential contributes an expulsive force driving the D3-brane towards the UV.

To parametrize the leading corrections of this sort to the D3-brane potential, one is

therefore interested in the handful of lowest-dimension operators that produce a potential

on the Coulomb branch. Happily, the supergravity modes around AdS5 × T 1,1 have been

classified [11, 12] and matched to the dimensions of the corresponding operators in the

‘conifold CFT’ [13, 14], i.e. the SU(N) × SU(N) gauge theory coupled to bi-fundamental

fields Ai, Bj (i, j = 1, 2). We will use these results to analyze the D3-brane potential from

the gravity and gauge theory points of view in section 2 and section 3, respectively.

We will see there that the lowest-dimension contributing operators O∆ are chiral op-

erators of dimension 3/2 and non-chiral operators of dimension 2; the latter are protected

from acquiring large anomalous dimensions as they are in supermultiplets of global sym-

metry currents.6 The chiral operators can be forbidden from appearing in terms of the

form (1.2) if the compactification preserves a small discrete symmetry group, as explained

further in section 4, but are otherwise generically present. Depending on the symmetries

of the compactification, one then encounters two natural possibilities:

1 < ∆ < 2 (“fractional”) case. The perturbation (1.2) involving the chiral operator

O3/2 is present in the theory, i.e. allowed by all the symmetries. Then, one will obtain a

potential of the form ∆V = −cM−3/2
UV |FX |2φ3/2.

∆ = 2 (quadratic) case. The operator O3/2 is forbidden from appearing in terms of

the form (1.2) by a discrete symmetry in the bulk, or by orbifolding the conifold as in

e.g. [14]. Then the leading perturbation comes from the non-chiral operator O2 and yields

a potential of the form ∆V = −cM−2
UV|FX |2φ2.

The phenomenology, after appropriate fine-tuning to obtain inflation, depends crucially

on whether the fractional or quadratic case is realized; see section 5. The potential in the

fractional case is of the same inflection-point form as the D3-brane potential generated by

a moduli-stabilizing D7-brane stack that descends into the throat region while wrapping

5For simplicity of presentation we restrict these preliminary remarks to perturbations induced by a single

operator. Perturbations to the Lagrangian induced by more than one operator will be presented below.
6 When the throat is embedded into a compact Calabi-Yau, all continuous global symmetries are broken.

However, the resulting shift of the operator dimension away from 2 is negligible in the relevant limit of a

long throat.
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a suitable (Kuperstein-embedded [18]) four-cycle [9, 10]. However, from the present view-

point, we see that this structure arises far more generally, and can be understood from the

geometry of the throat itself, even in the absence of D7-branes in the throat region. There-

fore, the correction to the D3-brane potential induced by D7-branes as computed in [9, 10],

is in fact the most generic leading correction one would expect in a warped conifold throat

coupled to an arbitrary compact Calabi-Yau space.

In the quadratic case, which is also a fairly generic possibility, the leading correction

∆V induced by coupling to the bulk, is an inflaton mass. In this case, one should expect

to find inflation only when one balances ∆V against the H2φ2 term in (1.1). The resulting

model will have phenomenology of the sort envisioned in [6], and analyzed in detail in [19].

We should note that in other confining throat geometries, the harmonic analysis of the

KK spectrum would differ, and the corresponding specific form(s) of the potential, when

it is suitable for inflation, would likewise change. However, our strategy would allow one

to determine the structure of the D3-brane potential in a general throat, given sufficient

information about the KK spectrum; we briefly discuss other examples in section 4.

2 Potential for a D3-brane in a warped throat

2.1 D3-brane potential in type IIB supergravity

Warped flux compactification. We work in the supergravity approximation in which

the Einstein-frame action for type IIB string theory takes the form

SIIB =
1

2κ2
10

∫
d10x

√
|g|

[
R +

∂M τ∂
M τ̄

2 Im(τ)2
− G3 · Ḡ3

12 Im(τ)
− F̃ 2

5

4 · 5!

]

+
1

8iκ2
10

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
+ Slocal , (2.1)

where κ10 is the ten-dimensional gravitational coupling. Here τ ≡ C0 + ie−φ is the axio-

dilaton field and G3 ≡ F3 − τH3 is a combination of the RR and NS-NS three-form fluxes

F3 ≡ dC2 and H3 ≡ dB2. The five-form F̃5 ≡ F5 − 1
2C2 ∧H3 + 1

2B2 ∧ F3 is self-dual,

F̃5 = ⋆10F̃5 . (2.2)

Slocal denotes contributions from D-branes and orientifold planes. We will be interested in

the following class of metrics:

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mn(y)dy

mdyn , (2.3)

where y are the coordinates of the six-dimensional internal space. In the special case

of fluxes that are purely imaginary self-dual, ⋆6G3 = iG3, the metric g̃mn is simply the

unwarped Calabi-Yau metric [20]. However, we will be interested in situations where more

general fluxes, moduli-stabilization effects, and antibranes create more complicated warping

of the internal manifold. Then g̃mn is not a Calabi-Yau metric; it has some additional

warping and squashing [21–23].

– 5 –
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The self-duality lets us write the five-form as

F̃5 = (1 + ⋆10)
[
dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
. (2.4)

It will prove convenient to define the following combination of the warp factor and the

five-form

Φ± ≡ e4A ± α , (2.5)

and to decompose the three-form flux into imaginary self-dual (ISD) and imaginary anti-

self-dual (IASD) components,

G± ≡ (i± ⋆6)G3 . (2.6)

The Einstein equations and the Bianchi identity for the five-form then imply7

∇̃2Φ± =
e8A+φ

24
|G̃±|2 + e−4A|∇̃Φ±|2 + local , (2.7)

where gs ≡ eφ = 1/Im(τ) and tildes indicate that all contractions are with respect to the

reference metric, g̃mn. In compactifications with ISD fluxes (G− = 0), g̃mn is a Calabi-Yau

metric and the tree-level flux solution is α = e4A, so that Φ− = 0 [20]. In this work we

study linearized perturbations around this background solution.

In the perturbed solution, the internal space is squashed in such a way that the overall

metric cannot be written as a Ricci-flat metric with a single warp factor [22]. Nevertheless,

the definition (2.5) of Φ− remains applicable: the e4A appearing in Φ− is the square of the

warp factor multiplying the Minkowski metric, as indicated in (2.3), while α = C0123, which

is well-defined. Moreover, at linear order Φ− obeys the Laplace equation with respect to

the unperturbed Calabi-Yau metric g̃
(0)
mn: perturbations in g̃mn correct the Φ− equation of

motion only at second order. We defer a detailed study of the effects of G− perturbations

to a separate publication [17]. Here, we study the solutions of (2.7) without the G− source

term, i.e. the solutions of the Laplace equation

g̃mn(0) ∇m∇nΦ− ≡ ∇̃2Φ− = 0. (2.8)

D3-brane potential and perturbations of the geometry. From the Dirac-Born-

Infeld (DBI) and the Chern-Simons (CS) terms in the action for a D3-brane, one can see

that the potential felt by a D3-brane is

V = T3 Φ− . (2.9)

To systematically investigate the D3-brane potential, one is therefore interested in pertur-

bations to the throat background that involve non-vanishing values of the Φ− field. There

are two different kinds of perturbations that might arise:

a) perturbations of the throat by normalizable modes of the supergravity fields. In the

gauge theory language, these are perturbations of the state of the dual CFT and

correspond to SUSY-breaking perturbations in the IR that give rise to a D3-brane

potential. Examples include the SUSY-breaking antibrane state [16] whose super-

gravity solution was found in [21], or the baryonic branch state described in [22, 23].

7This corrects the corresponding equation in [20] by a numerical factor.
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b) perturbations of the throat by non-normalizable8 modes of the supergravity fields.

These are deformations of the CFT Lagrangian induced by the coupling of the CFT

to UV physics.

The perturbations of type (a) due to the IR SUSY-breaking state have already been

accounted for in discussions of the D3-brane dynamics in the throat: in particular, the

Coulomb interaction between the D3-brane and anti-D3-brane can be described in this

way [21] (see also section 3.3). The perturbations we will focus on in this paper are those

of type (b), where the throat geometry is deformed by the coupling to the bulk compact

space, or equivalently the CFT Lagrangian is perturbed by the coupling to UV physics.

The effects on the inflaton dynamics of such perturbations have thus far been studied in

only a few special cases, but we will see that they admit a systematic treatment.

2.2 Leading perturbations to the supergravity

We assume that the Calabi-Yau metric in (2.3) can be approximated in some region by a

cone over a five-dimensional Einstein manifold X5

g̃mndy
mdyn = dr2 + r2ds2X5

. (2.10)

Specifically, we have in mind the canonical example of ref. [7], for which X5 is the [SU(2)×
SU(2)]/U(1) coset space T 1,1, and the would-be singularity at the tip of the throat, r = 0,

is smoothed by the presence of appropriate fluxes. Roughly, this corresponds to the tip of

the throat being located at a finite radial coordinate rIR, while at r = rUV the throat is

glued into an unwarped bulk geometry. For rIR ≪ r < rUV the warp factor in (2.3) may

be written as [8]

e−4A(r) =
L4

r4
ln

r

rIR
, L4 ≡ 81

8
(gsMα′)2 , (2.11)

where

ln
rUV

rIR
≈ 2πK

3gsM
. (2.12)

Here, M and K are integers specifying the flux background.

In this section, we discuss the leading non-normalizable perturbations to the throat

that perturb the D3-brane potential and arise from coupling to the bulk Calabi-Yau moduli

and to four-dimensional supergravity. Provided that the D3-brane is well-separated from

the UV region, the most important perturbations are those that diminish least rapidly

toward the IR. In the gauge theory language, these are of course the lowest-dimension

operators perturbing the theory, but we will reserve the gauge theory discussion for section

3, and attempt to keep the present gravity-side discussion self-contained.

8In the full compact solution these modes become normalizable, but their behavior in the limit of a non-

compact throat is that of non-normalizable modes. Correspondingly, the modes referred to as normalizable

in (a) are normalizable even in the noncompact limit.
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Harmonic analysis. The spectroscopy of T 1,1 was worked out in detail in [12]; a nice

summary is presented in appendix A of [24]. Our interest is specifically in the lead-

ing linearized perturbations of Φ−. A systematic analysis of KK excitations around

AdS5 ×T 1,1 [11, 12, 25] has revealed that the modes related to Φ± perturbations are linear

combinations of the conformal factor of T 1,1, δg aa ≡ γ,9 and of the four-form perturbation

with all four indices along T 1,1, δCabcd ≡ b. These modes have the harmonic expansions [12]

{γ, b} =
∑

L,M

{γLM , bLM} r∆(L)−4 YLM(Ψ) + c.c. , (2.13)

where {γLM , bLM} are constants. Here Ψ stands for the five angular variables, L ≡
{J1, J2, R} and M ≡ {m1,m2} represent the quantum numbers under the SU(2)×SU(2)×
U(1)R global symmetry, YLM (Ψ) is the corresponding angular harmonic, and

∆ ≡ −2 +

√
6
[
J1(J1 + 1) + J2(J2 + 1) −R2/8

]
+ 4 . (2.14)

With some notational prescience, we have used the symbol ∆ to represent the radial de-

pendence; we will verify in section 3 that ∆ is indeed the dimension of the corresponding

operator deforming the CFT. Here, ∆ relates to the eigenvalue of the five-dimensional

Laplacian on T 1,1, �5YLM = −ΛYLM , where

Λ ≡ 6
[
J1(J1 + 1) + J2(J2 + 1) −R2/8

]
. (2.15)

Group-theoretic considerations give selection rules for the quantum numbers and restrict

the harmonics appearing in the expansion (2.13) [12]. The lowest few modes appear in

table 1 of [24]; the full tower of modes is given in table 7 of [12].10

Our next step is to relate the “transverse” fields γ and b appearing in (2.13) to the

“longitudinal” fields e4A and α = C0123 that determine the D3-brane potential via Φ− =

e4A − α. If b ≡ δCabcd ∼ r∆−4 then δFabcde also scales as r∆−4 because it contains only

an additional angular derivative. Using the self-duality of the five-form field strength,

and noting that the unperturbed ten-dimensional metric satisfies
√−g ∼ r3, we find that

δF0123r = ∂rδC0123 = ∂rδα ∼ r∆−1. This implies that δα ∼ r∆.

A similar argument applies to perturbations of the warp factor. There exists a propor-

tionality relation between the perturbation of the conformal factor δg µµ and γ; for example,

in the analogous case of AdS5 × S5, δg µµ = 16
15γ [25]. Thus, δgµν ∝ γ r2ηµν , so that the

perturbed metric is

gµν = r2ηµν(1 + const.× γ) = e2Aηµν . (2.16)

It then follows that the perturbation to the warp factor scales as δe4A ∼ r4γ ∼ r∆. The

harmonic expansion of Φ− may therefore be written as

Φ−(r,Ψ) =
∑

L,M

ΦLM

( r

rUV

)∆(L)
YLM (Ψ) + c.c. , (2.17)

where ΦLM are constants. It is straightforward to verify that Φ− obeys the Laplace equa-

tion in the unperturbed Calabi-Yau metric of the conifold.

9Our notation can be translated to the notation of [11, 12, 25] by the substitutions g → h, γ → π.
10We advise the reader that the discussion in [24] does not include the lowest components of current

supermultiplets, which will be important for us but were not relevant for the purposes of those authors.
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Effective radial potential. We now digress briefly to discuss the effect of a single

mode11

Φ
(∆)
− =

(
r

rUV

)∆

fL(Ψ) , (2.18)

where

fL(Ψ) ≡
∑

M

ΦLMYLM (Ψ) + c.c. (2.19)

To isolate the radial dynamics, we first minimize the potential in the angular directions.

When the angular coordinates have relaxed to their minima, the potential reduces to an ef-

fective single-field potential for the radial direction r. At fixed radial location, the D3-brane

potential induced by (2.18) is minimized at some angular location Ψ⋆ where fL(Ψ⋆) is neg-

ative. Such an angular location always exists because any nontrivial harmonic necessarily

attains both positive and negative values.12 When the D3-brane sits at Ψ⋆, the contribution

of (2.18) to the radial potential is negative, and is minimized at r → ∞. This result is quite

general: the potential induced by any individual perturbation of Φ− produces a radially-

expulsive force. This is fortunate, because the inflaton mass term sourced by the coupling

to four-dimensional gravity provides a problematically-strong force towards the tip [6].

Inflation will be possible when these two leading forces cancel to a good approximation.

Incorporating the normalization of ∆V determined in appendix A we may write

∆V = −c a4
0 T3

(
φ

φUV

)∆

, (2.20)

where φ =
√
T3r is the canonically-normalized inflaton and c is a positive constant.

To determine the leading corrections to the inflaton potential we therefore identify

the nontrivial13 Φ− modes with the smallest values of ∆, cf. equation (2.14). Taking into

account the selection rules for J1, J2 and R, the lowest mode, Φ
(3/2)
− , has {J1, J2, R} =

{1
2 ,

1
2 , 1}, yielding ∆ = 3/2. We also find modes Φ

(2)
− with {J1, J2, R} = {1, 0, 0} and

{0, 1, 0}, leading to ∆ = 2. The description of these modes in the gauge theory will be

given in section 3.

There are then two generic possibilities:

1 < ∆ < 2 (“fractional”) case. Suppose the mode Φ
(3/2)
− is allowed to appear by

all of the symmetries of the problem (see section 4). Then the leading correction to the

potential is

∆V = −c a4
0 T3

(
φ

φUV

)3/2

. (2.21)

We have therefore reduced to the system studied in [9]. However, the logic here is more gen-

eral; it applies even in the absence of specific embedded D7-branes in the throat geometry,

and is easily generalized to other warped throats.

11If more than one angular mode is relevant during inflation, then the dynamics is significantly more

complicated than what is described below.
12To see this, note that any non-constant harmonic is is orthogonal to the constant (L = 0) harmonic.

This implies that the integral of this harmonic has to vanish, so that the harmonic cannot be of the same

sign everywhere.
13As explained in [24], the mode with ∆ = 0 can be gauged away.
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∆ = 2 (quadratic) case. As will be clear from the gauge theory analysis, it is easy to

forbid the mode Φ
(3/2)
− from appearing in ∆V if one preserves a modest discrete symmetry

in the geometry. This discrete symmetry might act in the bulk only and forbid the lowest

perturbation in the throat, or it can act on the throat as well so that the throat becomes

an orbifold of the warped deformed conifold. The leading effect is then due to Φ
(2)
− and

takes the form

∆V = −c a4
0T3

(
φ

φUV

)2

. (2.22)

This mass term can be tuned against the problematic H2φ2 term in (1.1), and the phe-

nomenology reduces to that studied in [6, 19].

3 Gauge/gravity duality for D3-brane potentials

We have seen how to compute, on the gravity side of gauge/gravity duality, the leading

contributions to the inflaton potential induced by the coupling to four-dimensional super-

gravity and to the bulk Calabi-Yau fields. It is very instructive to repeat this analysis on

the gauge theory side.

As explained in section 2, we wish to study perturbations of the Lagrangian of the dual

CFT, corresponding to non-normalizable modes in the AdS geometry. We exclude relevant

perturbations to the four-dimensional theory, but will find that the leading corrections

come from operators of the form
∫
d4θ M−∆

UV X†X O∆ , (3.1)

where X is a moduli field that obtains a SUSY-breaking F-term vev.

Two questions immediately arise from (3.1):

1. Which CFT operators O∆ correspond to perturbations of Φ− and hence induce a

D3-brane potential?

2. How is the operator dimension ∆ related to the radial profile of the D3-brane poten-

tial V (r)?

We answer these questions in the following sections.

3.1 Leading perturbations to the gauge theory

The operators O∆ that correspond to Φ− perturbations are those that produce a potential

on the Coulomb branch of the CFT; hence, they should be made out of the scalar fields

that parametrize this Coulomb branch. To enumerate the lowest-dimension such operators

one can begin by listing chiral and otherwise protected operators in the gauge theory, with

the understanding that at strong ’t Hooft coupling a gravity-side analysis is necessary to

determine the dimensions of more general operators.

The gauge theory dual to the warped deformed conifold geometry is an SU(N +M)×
SU(N) gauge theory with bi-fundamental fields Ai, Bj (i, j = 1, 2). The single-trace op-

erators built out of these scalar fields and their complex conjugates are labeled by their
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SU(2)A × SU(2)B × U(1)R quantum numbers (J1, J2, R). Using the AdS/CFT correspon-

dence, the dimensions of these operators are given by (2.14), though in the highly protected

cases of interest to us, the dimensions can be determined directly in the gauge theory as well.

Chiral operators. For J1 = J2 = R/2, these operators are chiral and have the sim-

ple form

O∆ = Tr
(
A(i1B(j1A

i2Bj2 . . . A
iR)BjR)

)
+ c.c. (3.2)

The dimensions of these chiral operators, ∆ = 3R/2, are fixed by the N = 1 superconformal

invariance. The lowest-dimension such operators are

O3/2 = Tr (AiBj) + c.c. , (3.3)

which have {J1, J2, R} = {1
2 ,

1
2 , 1}. These chiral operators have ∆ = 3/2 and determine

the leading term in the inflaton potential via (3.1), unless they are forbidden to appear by

symmetries that are preserved by the full string compactification; see section 4.

Non-chiral operators. There are a number of operators which have the next lowest

dimension, ∆ = 2. For example, there are operators with {J1, J2, R} = {1, 0, 0}:14

O2 = Tr
(
A1Ā2

)
, Tr

(
A2Ā1

)
,

1√
2
Tr

(
A1Ā1 −A2Ā2

)
, (3.4)

and the corresponding {J1, J2, R} = {0, 1, 0} operators made out of the fields Bj. While

non-chiral, these operators are protected because they are related by supersymmetry to

SU(2)×SU(2) currents; therefore, their dimension, 2, is exact in the gauge theory.15 Using

gauge/gravity analysis we can see that the above operators source an inflaton potential

at the linearized level; therefore, they will play an important role in our considerations.

In particular, if the chiral operators of dimension ∆ = 3/2 are forbidden by discrete

symmetries, the non-chiral operators (3.4) will determine the leading corrections due to

bulk effects, and will allow a direct tuning of the inflaton mass.

3.2 D3-brane potential via AdS/CFT

We now comment on the correspondence between operator dimensions in the CFT and the

radial profiles of bulk contributions to the D3-brane potential. Let us consider a conformal

gauge theory on a stack of D3-branes perturbed by an operator O∆ of dimension ∆. If

the gauge theory has a Coulomb branch corresponding to separating a D3-brane from the

stack, then we expect such an operator to produce a potential scaling as φ∆ where φ is the

scalar field corresponding to the D3-brane position. In gauge theories that have near-AdS

gravity duals we can demonstrate this result, for a class of operators, by studying small

perturbations to the background that are dual to the operators O∆.

14An additional operator with ∆ = 2 is the SU(2) × SU(2) × U(1)R singlet operator U that belongs to

the baryon number current multiplet. This operator is responsible for resolution of the conifold [26], and it

sources a D3-brane potential in the throat at the non-linear level [23].
15See footnote 6.
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Operator dimensions and radial scaling of ∆V . Let us now add a new entry to the

AdS/CFT dictionary by considering the behavior of the D3-brane potential on the Coulomb

branch. Our study will be rather general, although we will mainly use AdS5 × T 1,1 as an

example. We will utilize the well-known correspondence [27] between the dimensions of

gauge-invariant operators and the radial scaling of bulk AdS fields: in terms of the AdS5

metric ds2AdS = r2dxµdxµ + dr2/r2, the solutions for a field χ associated with an operator

of dimension ∆ are

χ(r) = χ1r
−∆ + χ0r

∆−4 . (3.5)

Here χ0 is dual to the source for the operator O∆, χ1 is dual to its expectation value [26],

and r is dual to the energy scale in the gauge theory. If we introduce a UV cutoff rUV,

then χ0 scales as r4−∆
UV , while χ1 scales as r∆UV.

Comparing (3.5) to (2.13) and (2.17) we see that ∆ as given in (2.14) is in fact the

dimension of the operator dual to the associated perturbation of Φ−, justifying our choice

of notation in section 2. Importantly, we have established the following correspondence

between the operator dimension and the radial profile of the D3-brane potential,

∆V ∝ r∆ , (3.6)

in agreement with the field theory expectations for the scaling of the potential on the

Coulomb branch. As is obvious from our derivation, this result is general to the AdS/CFT

correspondence and applies to any AdS5 ×X5 background of type IIB string theory.

Chiral operators. If we perturb the theory by a chiral operator (3.2), then the potential

is found to behave in accordance with classical expectations. Namely, if we substitute for

Ai, Bj the classical formulae [28]

A1 ∼r3/4 sin(θ1/2)e
i(ψ−φ1)/2 , A2 ∼ r3/4 cos(θ1/2)e

i(ψ+φ1)/2 ,

B1 ∼r3/4 sin(θ2/2)e
i(ψ−φ2)/2 , B2 ∼ r3/4 cos(θ2/2)e

i(ψ+φ2)/2 , (3.7)

we obtain the correct dependence of the potential on r and on the angular directions of

T 1,1 even at strong coupling, as confirmed by our dual gravity calculation:

∆V ∼ −c a4
0 T3

(
r

rUV

)3R/2

YLM (Ψ) + c.c. , (3.8)

where L = {R2 , R2 , R}. We explain the overall normalization of (5.1) in appendix A.

Non-chiral operators. Not surprisingly, this simple classical argument is not applicable

for generic non-chiral operators that contain Ā and/or B̄; this is in part because such

operators obtain generally irrational anomalous dimensions at strong ’t Hooft coupling,

where the gravity description is valid. An important special case is provided by the lowest

components of supermultiplets of currents, which are protected. We will see that in some

circumstances these non-chiral operators in fact give the leading contribution to the inflaton

potential; see section 4.
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3.3 Remarks on the Coulomb potential

For completeness, we now describe the Coulomb interaction between a D3-brane in the

throat and an anti-D3-brane at the tip of this throat, on both the gravity side and the

gauge theory side.

The Coulomb potential can be calculated by viewing the mobile D3-brane as a per-

turbation to Φ+ = 2e4A. The effect of a D3-brane on the warp factor e−4A was calculated

in [29]; inverting this result we find

VD3/D3(r) = T3 Φ+(r; r0) = 2a4
0T3 + a4

0T3


∑

L,M

ΦLM

(r0
r

)4+∆(L)
YLM (Ψ) + c.c.


 , (3.9)

where a0 ≡ eA(r0) ∼ r0/rUV, while r0 represents the radial coordinate in the throat where

the anti-D3-brane is located. This perturbation introduces a correction to the anti-D3-

brane energy whose magnitude depends on the D3-brane position r, and therefore induces

a potential for the D3-brane [6]. The leading term, corresponding to ∆ = 0, is the usual

radial Coulomb potential. As noted in [30], this term corresponds to adding the dimension-8

operator Tr(F 4) in the dual gauge theory. The remaining terms give subleading, angular-

dependent corrections corresponding to operators of yet higher dimension.

The formula (3.9) for perturbations of Φ+ is valid for any r0 < r. After introducing a

factor r−4
0 to transform to perturbations of the fields on T 1,1 (see the discussion leading up

to (2.17)), we observe that these perturbations grow with r0 as r
4+∆(L)
0 . This means that in

the infrared gauge theory these perturbations correspond to adding sources for operators of

dimension 8+∆(L). The corresponding operators have the schematic form Tr(F 4AiBj . . .).

Alternatively, one can arrive at the same result by solving (2.7) for the normalizable

Φ− profile created by an anti-D3-brane; such a perturbation directly introduces a potential

for D3-brane motion, VD3/D3 = T3 Φ−. Reading off Φ−(r) from (3.9) and multiplying by

r−4 to transform to the “transverse” field components, we find that their perturbations

fall off as r−8−∆(L). It follows that these perturbations correspond to expectation values

for operators of dimension 8 + ∆(L) like Tr(F 4AiBj . . .). Thus, either way of interpreting

the Coulomb potential leads to the conclusion that it is mediated by the above gauge

theory operators. However, note that the D3-brane introduces a non-normalizable Φ+

perturbation, or equivalently introduces a source for these operators, whereas the anti-

D3-brane induces a normalizable Φ− perturbation, or equivalently leads to an expectation

value for these operators.

The normalizable perturbations δΦ+ correspond to different operators. Perturbations

of the warp factor satisfy ∇̃2(δe−4A) = 0. The normalizable fluctuations [29]

δe−4A ∼ r−4
(r0
r

)∆
YLM (Ψ) (3.10)

when plugged into the angular metric e−2Ar2ds2T 1,1 then give metric perturbations ∼
r−∆YLM . These correspond to vevs of operators of dimension ∆ like Tr(AiBj). In sec-

tion 2.2 we also concluded that sources for these operators correspond to non-normalizable

fluctuations of Φ−.
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Thus, by studying both normalizable and non-normalizable perturbations δΦ+ and

δΦ− we are led to the following conclusions:

i) For perturbations δΦ− the non-normalizable modes correspond to sources of operators

of dimension ∆ like Tr(AiBj), but normalizable perturbations correspond to vevs of

operators of dimension 8 + ∆ such as Tr(F 4AiBj).

ii) For perturbations δΦ+ the non-normalizable modes correspond to sources of operators

of dimension 8 + ∆ like Tr(F 4AiBj), but normalizable perturbations correspond to

vevs of operators of dimension ∆ such as Tr(AiBj).

While this was implicit in earlier literature, we believe that this curious asymmetry has

not been emphasized.

3.4 Revisiting the eta problem

Having given a classification of the leading corrections to the inflaton potential from bulk

effects, we now revisit the origin of the H2φ2 term in (1.1). In the presence of SUSY-

breaking by a moduli F-term FX , one generically expects contributions to the inflaton

potential of the form ∫
d4θ M−2

UV X
†X KCFT (3.11)

where KCFT is the Kähler potential of the CFT. This is the contribution responsible for

the famous supergravity eta problem [31], and was found directly in [6] for the warped

D-brane model of interest to us.

How do we understand the appearance of such a term, in the context of the approach

presented in this paper? We note the potentially confusing fact that in the classification

of [12], there are no operators OCFT which have ∆ = 2, are singlets under the global

symmetries of the CFT, and correspond to Φ− perturbations. Hence, it may naively seem

difficult to generate the appropriate φ2 terms in the potential, by UV perturbations of

the form (3.11).

However, there is no problem in identifying such a perturbation on the gravity side.

In fact, this is precisely the term that was computed in [6] by studying a probe D3-brane

in a warped flux background with nonperturbative moduli stabilization. So why then do

we find no corresponding ∆ = 2 operator in the CFT?

The general philosophy of the renormalization group (RG), as applied to the conifold

CFT, is as follows. The tree-level Kähler potential that gives rise to the correct Coulomb

branch metric (as seen by probe D3-branes) is

Kclassical ∼


Tr

2∑

i,j=1

A†
iAiBjB

†
j




2/3

. (3.12)

Quantum mechanically in the large ’t Hooft coupling limit, this operator acquires a very

large dimension ∆ ∼ (gN)1/4; it is dual to a string state, not a supergravity mode. However,

we know that the RG flow of the theory with classical Kähler potential (3.12) must be such
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that at the IR critical point, there exists some KCFT that preserves scale invariance. The

absence of a marginal perturbation to this KCFT (as indicated by the spectroscopy of [12],

or by direct counting of moduli in the closed string dual) is not in conflict with the existence

of an admittedly uncomputable KCFT at the fixed point. We note that this is not a peculiar

feature of the conifold CFT; it is a common phenomenon, exhibited by e.g. supersymmetric

QCD theories in the conformal window, supersymmetric minimal models, and in fact most

superconformal field theories known to us. In sum, there is no inconsistency between a)

the presence of an inflaton mass generated by coupling to supergravity, and b) the absence

in the CFT of a ∆ = 2 operator that is dual to a Φ− perturbation and is invariant under

all global symmetries.

4 The Inflaton mass and discrete symmetries

We have described a general framework for relating the leading terms in the potential for

a D3-brane in a warped throat to perturbations of the dual gauge theory Lagrangian by

low-dimension operators. Clearly, a central question in this approach is the spectrum of

operator dimensions in the CFT. In section 4.1 we explain the role of discrete symmetries

preserved by the UV physics in determining the lowest-dimension operator perturbations

induced by the compactification. In section 4.2 we remark that certain classes of CFTs

manage to have no chiral operators with ∆ < 2, even before the coupling to UV physics.

4.1 Unbroken bulk symmetries

In known examples of CFTs with gravity duals, continuous global symmetries of the CFT,

corresponding to isometries of the throat geometry, are always present. Compact Calabi-

Yau spaces admit no continuous isometries, however, so the coupling of the throat to the

compact bulk necessarily breaks the throat isometries down to a (possibly trivial) discrete

subgroup. We refer to these residual symmetries as unbroken discrete symmetries.

Our general strategy has been to perturb the CFT Lagrangian by the most general

operators consistent with all symmetries of the problem; in particular, no perturbation

that is forbidden by unbroken discrete symmetries will be turned on. Chiral operators

are readily forbidden in this way. For example, Tr(AiBj) is forbidden from appearing by

e.g. a Z2 symmetry acting as Ai → −Ai, and it is straightforward to arrange for the full

compactification to preserve such a discrete subgroup of the global symmetry of the CFT.

Perturbations by non-chiral operators, however, are much more difficult to forbid; and as

we have seen, ∆ = 2 non-chiral perturbations in the supermultiplets of conserved currents

are present in any CFT with a continuous global symmetry.

Thus, the chiral O3/2 perturbations lead to the dominant contribution to the inflaton

potential unless they are forbidden by unbroken discrete symmetries. In contrast, the

non-chiral O2 perturbations are generically present.

4.2 Chiral CFTs

The above discussion applies to the conifold CFT, and more generally to any CFT pos-

sessing a chiral operator with 1 < ∆ < 2. However, the presence of such operators is
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certainly not a universal feature of the large N CFTs that have known gravity duals. For

instance, in N = 4 supersymmetric Yang-Mills theory, the lowest-dimension operators

(chiral and non-chiral) have ∆ = 2. The same applies to many orbifolds of this theory

by subgroups of its R-symmetry group [32, 33]; for instance, the N = 2 supersymmetric

theory arising from N D3-branes on C
2/Z2 again has (chiral and non-chiral) operators

with ∆ = 2 as its lowest-dimension perturbations. Below, we describe some CFTs in which

the lowest-dimension operators are non-chiral operators in the supermultiplets of currents

and have ∆ = 2; we focus on these examples because cascading geometries based on small

perturbations of these theories have already been studied in the literature.

Z2 orbifold of the conifold. One well-known example of a theory where ∆ < 2 op-

erators do not appear is the Z2 orbifold of the warped deformed conifold by za → −za,
a = 1, . . . 4. This warped throat metric is the same as in [7], but the range of the ψ co-

ordinate is reduced from [0, 4π) to [0, 2π). From the point of view of the cascading gauge

theory, the Z2 action is best thought of as

Ai → −Ai , i = 1, 2 . (4.1)

This produces a chiral [SU(N +M) × SU(N)]2 gauge theory whose duality cascades were

studied in e.g. [34].

Up to logarithmic corrections, the asymptotic geometry is that of AdS5 × T 1,1/Z2,

where the Z2 acts freely. This configuration is created by D3-branes at the tip of a complex

cone over F0 = P1 × P1 [14]. In the dual chiral CFT, ∆ = 3/2 chiral operators (3.3) are

removed by the Z2 projection (4.1). The lowest-dimension operators in this theory are

∆ = 2 operators of the form (3.4), and the corresponding operators made out of the fields

Bj , that belong to the SU(2) × SU(2) current multiplets.16

Y p,q throats. The identification of the lowest-dimension operators with the leading cor-

rections to the inflaton potential has broad implications for models based on arbitrary

warped throats, not just the warped deformed conifold.

As we have seen above, the fact that the Z2-orbifolded conifold gauge theory is chiral

implies that the chiral operators of ∆ < 2 are absent from the spectrum. This feature of

chiral gauge theories seems to be quite generic. For instance, it appears to extend to the

entire class of theories dual to AdS5 × Y p,q, where p > q. The chiral ring in these theories

was studied in [35, 36] with the conclusion that the lowest dimension chiral operator has

either dimension 3, or dimension

3

2
(p− q + s) , or

3

2
(p+ q − s) , (4.2)

where s ≡ (3q2 − 2p2 + p
√

4p2 − 3q2)/(3q). It is not hard to check that these dimensions

exceed 2 for all p > q. As a result, the lowest-dimension scalar operators that are known

16We remark that, in the AdS5 × T 1,1/Z2 approximation, the associated contribution to the potential

actually scales as r2 ln r (corresponding to a source for an operator with ∆ = 2 [26]), so at very large r the

repulsion will dominate over the attractive force of [6].
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have dimension 2 and belong to current multiplets; such current multiplets are always

present, as all Y p,q spaces have SU(2) × U(1) × U(1)R symmetry. The full KK spectrum

of these models is not known, and so it is possible that there exist non-chiral operators

with ∆ < 2, but this seems unlikely based on experience with simpler models. Thus,

the phenomenology of inflation models in throats based on Y p,q models [37] is likely quite

similar to that in the Z2 orbifold of the warped deformed conifold discussed above.

5 Phenomenology and a classification of models

In this paper we have given a systematic classification of the leading contributions to the

D3-brane potential in warped throat geometries and the associated contributions to the

slow-roll eta parameter

V (φ) = V0(φ) +H2
0φ

2 + ∆V (φ) (5.1)

η(φ) = η0 +
2

3
+ ∆η(φ) =? (5.2)

Here, V0(φ) is defined to be all terms in V (φ) with negligible contributions to the eta

parameter, i.e. η0 ≪ 1. This includes the brane-antibrane Coulomb interaction

VD3/D3(φ) = D

(
1 − 3D

16π2

1

φ4

)
, D ≡ 2a4

0T3 , (5.3)

as well as any other sources of nearly-constant energy, e.g. bulk contributions to the cos-

mological constant. The mass term in (5.1), with

3M2
plH

2
0 ≡ V0(φUV) , (5.4)

generically makes the potential too steep for prolonged inflation to occur. The eta param-

eter can only be small if the additional contributions to the potential ∆V can cancel this

mass term.

In this paper we have given a framework in which the contributions to ∆V can be clas-

sified and their effects on the inflationary dynamics systematically analyzed. In particular,

we have found the following spectrum of correction terms to the inflaton potential

∆V (φ,Ψ) =
∑

L,M

c∆

(
φ

φUV

)∆(L)

αLMYLM (Ψ) + c.c. , (5.5)

where the constants c∆ are strongly model-dependent (see appendix A). In general, the

potential (5.5) can have a complicated angular dependence. However, if only one angular

mode dominates, the total potential (5.1) reduces to

V (φ) = V0(φ) + M2
plH

2
0

[(
φ

Mpl

)2

− c∆

(
φ

φUV

)∆
]
. (5.6)

In the following we restrict ourselves to a discussion of (5.6) and leave a more detailed

analysis of (5.5) for a future study. The lowest-dimension operator allowed by the symme-

tries of the compactified throat geometry then determines the inflationary phenomenology

associated with the potential (5.6).
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5.1 Summary: a classification of models

We may separate possible D-brane inflation models based on gauge/string duality into

three classes:

i) Fractional case: 1 < ∆ < 2

In the first class, the CFT coupled to the Calabi-Yau sector contains operators of

dimension 1 < ∆ < 2 that produce a potential on the Coulomb branch. Clearly, this

is possible only if the CFT itself contains such operators, and perturbations by these

operators are allowed by any (discrete) global symmetries preserved by the bulk.

The generic form of the inflaton potential is then (5.6) with 1 < ∆ < 2. In this case,

we expect that fine-tuned inflation near an approximate inflection point is typically

possible. We describe the phenomenology of this case in section 5.2.1.

ii) Quadratic case: ∆ = 2

In the second class, the lowest-dimension operators allowed by the global symmetries

of the bulk have ∆ = 2. This is the generic situation in warped throats dual to chiral

gauge theories. In section 4 we explained how even in non-chiral gauge theories,

simple discrete symmetries can forbid any ∆ < 2 chiral operators while allowing

operators with ∆ = 2. In this case the potential takes the form

V (φ) = V0(φ) + βH2
0φ

2 , (5.7)

where the parameter β can be fine-tuned by varying the strength of the UV per-

turbation. One can therefore obtain models of small-field inflation similar to those

considered in [6, 19]. We comment on the phenomenology of this case in section 5.2.2.

iii) Unworkable case: ∆ > 2

Finally, we could imagine warped throats dual to gauge theories where all contributing

operators have dimensions ∆ > 2. If such throats are supersymmetric, they cannot

have continuous isometries, since the latter would imply the presence of ∆ = 2

scalar superpartners of conserved currents. Constructing such throats is technically

challenging and at present no examples exist. In any event, such throats are not

desirable for brane inflation, because the leading correction to the inflaton potential

is generically too small to solve the eta problem.

5.2 Comments on phenomenology

5.2.1 “Fractional” case: 1 < ∆ < 2

If the symmetries of a compactification of the warped deformed conifold allow a perturba-

tion by the chiral operator Tr(AiBj) with ∆ = 3/2, we obtain the following phenomeno-

logical potential for the inflaton17

V (φ) = V0(φ) + M2
plH

2
0

[(
φ

Mpl

)2

− a3/2

(
φ

Mpl

)3/2
]
, (5.8)

17As explained in [9], it is crucial to include the Coulomb interaction between the brane and the antibrane

in order to get a monotonic potential.
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where a3/2 ≡ c3/2

(
Mpl

MUV

)3/2
∼ O(1) (see appendix A). This is similar to the functional

form discussed in section 4 of [9], but the microscopic interpretation of the φ3/2 term is

now different. This implies that the microscopic constraints on the coefficient a3/2 that

were important in the context of [9] will not apply, and the corresponding difficulties in

fine-tuning the inflationary potential are significantly reduced.

The slow-roll parameter η corresponding to (5.8) is

η(φ) =
2

3
− 3a3/2

4

(
Mpl

φ

)1/2

+ η0(φ) . (5.9)

As in [9] we notice that η is large and negative for small φ, i.e. limφ→0 η = −∞. To have

inflation near some location φ⋆ inside the throat (φ⋆ < φUV ∼MUV) we require η(φ⋆) ≈ 0,

and hence, using η0(φUV) ≪ 1,

η(φUV) ≈ 2

3
−

3c3/2

4

(
Mpl

φUV

)2

> 0 (5.10)

or

c3/2 <
8

9

(
φUV

Mpl

)2

.
4

N
. (5.11)

In the second inequality of (5.11) we have applied the field range bound of [39]. Since

naturally c3/2 . O(1), the fine-tuning required to get “inflection point inflation” inside the

throat, c3/2 < 4/N , seems moderate.18 Moreover, as explained in appendix A, there is a

straightforward physical interpretation of suppressing the value of c3/2: one reduces the

F-term potential of a D3-brane in the UV region by arranging that all moduli-stabilizing

divisors are far from the inflationary throat.

5.2.2 Quadratic case: ∆ = 2

If the leading operator has dimension ∆ = 2, the phenomenology is quite different. The

potential (5.6) takes the form

V (φ) = V0(φ) +H2
0

[
1 − c2

(
Mpl

MUV

)2
]

︸ ︷︷ ︸
≡ β

φ2 , (5.12)

with a tunable ∆V ∼ βH2
0φ

2 term. The phenomenology of warped brane inflation with

a mass that is fine-tuned to solve the eta problem was discussed for β ≪ 1 in [6] and

parametrized in detail for β . 1 in [19, 43].

It is worth noting that in the quadratic case the potential can be flattened in a much

larger field range than in the inflection point models. Nevertheless, one cannot obtain

monomial large-field inflation, even if this were consistent with the form of the potential,

because of the field-range bound of [39].

18In particular, it seems to alleviate the delicate fine-tuning found in [9] and further explored in [40].

In fact, even in the setting of [9], there are further effects that appear to make the fine-tuning less

delicate [41, 42].
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Finally, let us remark that an expulsive potential is required for a DBI inflation sce-

nario [44] in which the brane moves out of the throat [45, 46]. It would be interesting to

use our results to parametrize possible models in this class.

6 Conclusions

We have presented a systematic approach to enumerating possible contributions to the po-

tential of a D3-brane in a warped throat region of a compact Calabi-Yau space. The effects

of supersymmetry-breaking deformations in the IR region of the throat, corresponding to

perturbations of the state of the dual (approximate) CFT, can be computed directly in any

well-specified example — e.g., one can easily compute the Coulomb potential produced by

an anti-D3-brane — and we did not advance this subject in the present work. On the other

hand, supersymmetry-breaking deformations in the UV, corresponding to deformations of

the Lagrangian of the dual CFT, will in general make important contributions to the D3-

brane potential, in a manner that appears a priori to be unconstrained and to depend

sensitively on the details of moduli stabilization and of the gluing of the throat into the

compact space.

Our strategy was to recognize that the leading contributions to the potential that arise

from UV deformations correspond to perturbations by the lowest-dimension operators in

the dual CFT that generate a potential on the Coulomb branch. Equivalently, these are

the perturbations of the supergravity mode Φ− (2.5) with the smallest possible eigenvalues

of the angular Laplacian. Although the coefficients of these perturbations do depend

sensitively on the properties of the compact space, the form of the resulting D3-brane

potential is dictated by the structure of the CFT.

Using existing results [12] on the Kaluza-Klein spectrum of T 1,1, we gave an example

of our approach, exhibiting the leading corrections to the inflaton potential for the case

of the warped deformed conifold [7]. The lowest-dimension contributing operator is chiral,

with ∆ = 3/2; when not forbidden by discrete symmetries, it generates a φ3/2 term in the

inflaton potential. The phenomenology is then similar to that which arises when moduli-

stabilizing D7-branes enter the throat region [9], but occurs far more generally. The next

contribution, which is the dominant effect in the presence of discrete symmetries that for-

bid the leading chiral term, comes from a non-chiral operator of dimension ∆ = 2, related

by supersymmetry to a global symmetry current. This perturbation introduces a negative

contribution to the inflaton mass-squared: it creates an expulsive force on the D3-brane.

This can be balanced against the problematically-large and positive inflaton mass described

in [6], and by fine-tuning the coefficient of the perturbation, it seems that the phenomenol-

ogy conjectured in [6] and studied in [19] can be obtained in a consistent construction.

Our methods extend immediately to more general throat geometries, given sufficient

knowledge of the Kaluza-Klein spectrum, or equivalently of the spectrum of lowest-dimen-

sion operators. In theories with global symmetries, it appears that fine-tuning the inflaton

mass to obtain inflation is straightforward. We remark that in theories without global

symmetries and in which the lowest-dimension chiral operators have ∆ > 2, fine-tuned
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warped brane inflation is apparently impossible. At present, we do not have examples of

such throats.
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A The Scale of moduli F-terms

In this appendix we explain the origin, and estimate the scale, of the F-term poten-

tial experienced by D3-branes in a nonperturbatively-stabilized conformally-Calabi-Yau

flux compactification.

As we have reviewed, a D3-brane in a compactification with imaginary self-dual

fluxes [20] experiences no classical force. However, incorporating nonperturbative effects

that stabilize the Kähler moduli will also generically lift the D3-brane moduli space [6, 51].

To see this concretely, consider the moduli stabilization scenario of [15] in the case of a

single Kähler modulus, ρ, governed by the superpotential [47] and Kähler potential [48]19

W =

∫
G3 ∧ Ω +A(y)e−aρ , K = −3 log

(
ρ+ ρ̄− k(y, ȳ)

)
, (A.1)

where y are the complex coordinates describing the D3-brane position in the internal space,

and k(y, ȳ) is the Kähler potential for the Calabi-Yau metric on this space. For the case

of D3-branes moving on the conifold, the explicit form of k is known [50], but will not be

needed here.

Elementary counting of equations shows that in generic situations, the F-terms for

the ρ, y system vanish only at special points in the configuration space, i.e. solutions to

DρW = DyW = 0 are isolated. For configurations involving moduli-stabilizing D7-branes

in the throat region, specific examples of isolated vacua were found in [51]. Our present

19For recent studies of the Kähler potential in warped compactifications, see [49].
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interest is in estimating the scale of the F-term potential experienced by a D3-brane in the

UV region of a throat that is glued into a nonperturbatively-stabilized bulk, in the case

that all divisors responsible for moduli stabilization are outside of the throat.

To this end, we further note that the nonperturbative superpotential vanishes whenever

a mobile D3-brane sits on the divisor bearing the nonperturbative effects [52]. (In the

presence of positive-energy sources, such as anti-D3-branes, there is consequently a generic

decompactification instability.) On the other hand, when the D3-brane sits in one of its

isolated supersymmetric vacua, the four-dimensional cosmological constant is negative.20

It follows that the change of four-dimensional potential energy required to move a D3-brane

from a supersymmetric vacuum location, onto the divisor responsible for Kähler moduli

stabilization, is of order the cosmological constant VAdS at the minimum of the potential,

∆VF (D3) ∼ |VAdS| . (A.2)

We next consider other sources of supersymmetry breaking. In addition to the con-

tribution of the brane-antibrane pair responsible for the inflationary energy, there must in

general be an additional ‘uplifting’ contribution (e.g. from a distant source of supersym-

metry breaking, such as other anti-D3-branes) in order for the cosmological constant to

remain positive after the annihilation of the inflationary brane-antibrane pair. A model-

building assumption that always underlies this scenario is that the net positive energy

Vuplift introduced by all such sources of supersymmetry breaking, including the inflation-

ary brane-antibrane pair, is not so large that it causes decompactification. From the shape

of the barrier to decompactification, one finds [15] Vuplift . few × |VAdS|. This condition

can be relaxed in more complicated configurations, e.g. [53]. The inflationary energy can

be an O(1) fraction of Vuplift, or can be considerably smaller, so that we may write

VD3/D3 = 2a4
0T3 = ε|VAdS| , ε . O(1) . (A.3)

We therefore conclude that, in the metastable de Sitter vacua of [15], the typical change

in the F-term potential upon moving a D3-brane from its supersymmetric minimum to the

divisor location is

∆VF (D3) ∼ |VAdS| ∼
1

ε
× 2a4

0T3 . (A.4)

Once again, our goal is to determine the typical scale VUV(D3) of the F-term potential

for a D3-brane in the UV region of the throat. In general, VUV(D3) . ∆VF (D3). The

approximate equality applies when the divisor bearing nonperturbative effects enters the

throat region; but in this case, the analysis reduces to that of [9]. On the other hand, if

the divisor is well-separated from the throat, and instead exists exclusively in the bulk

region, a D3-brane inside the throat will feel an F-term potential that is suppressed

compared to the estimate (A.4): the interaction with the divisor is of course suppressed

at large distances, as can be seen e.g. from the increasing mass of strings stretching from

the D3-brane to the divisor.

20For this discussion we omit the special case of supersymmetric Minkowski vacua.
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We conclude that the scale of the D3-brane F-term potential is variable and depends

on the proximity of the moduli-stabilizing divisor to the throat region. This is conveniently

represented by

VUV(D3) =
cF
ε

2a4
0T3 ≡ c a4

0T3 , (A.5)

where the coefficient cF can be small if the divisor is far from the throat, and is in any

case bounded above by cF . 1, following (A.4). Clearly, by adjusting the structure of the

compactification and the scales of the various sources of supersymmetry breaking, one can

arrange to vary c in a wide range.
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